MOTION OF A VORTEX NEAR THE BOUNDARY
BETWEEN TWO HEAVY FLUIDS

V. V. Golovchenko UDC 532,.5.517

The motion of a vortex beneath the surface of a heavy fluid has been discussed in both linear
[1, 2] and nonlinear [3-5] formulation.. The density of the upper medium is neglected, which
makes it possible to replace the continuity of pressure during transition through the boundary
between the media by constancy of the pressure at the boundary of the heavy fluid. In this
paper, the problem is solved in a general nonlinear formulation, including the mutual effects
of media motion, and the vortex can be in either the upper or lower medium. Steady-state
motion of a vortex of given intensity near the boundary between two heavy fluids is discussed
in terms of a model of an ideal and incompressible medium. Approximate expressions are
obtained for the boundary.

Inthe plane of the complex variable z = x + iy we consider steady-state motion of 2 medium consisting
of two ideal incompressible fluids with densities p, and p_ in a gravitational field with the potential gy.

Let the medium at infinity move along the x axis at a velocity v,, and let there be a vortex of intensity
T at the point z = ih (Fig, 1).

We designate by D, and D_ the flow regions of the fluids with respective densities -p, and p_; the
complex velocities of the fluids in these regions are u, and u_. We assume that the fluid with lower densi-
ty (p, < p_) is above the boundary L, the equation for which in parametric form is

2=f(2) (t=ei®, 0 < ¢ < 2m).

Under the assumptions made, the problem reduces to a determination of the function u_ (z), which is
analytic everywhere in the region D_, of the function w;(z), which is analytic in D, with the exception of the
point z = ih where it has a pole of first order, and of the shape of the boundary z = f(¢) under the following
conditions:
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The conditions (1)-(3), respectively, represent the condition of kinematic consistency of the flows, the con-
dition of continuity of pressure during the transition through the boundary of the media, and the condition
of damping of perturbed velocities at infinity.

We reduce this nonlinear problem containing the three unknown functions l_]_|_(Z), u_(z), and f& toa
problem involving a single unknown function. ‘

Let the function f(w) conformally map the interior of the circle |w! < 1 onto the region Dy so that the
point w = i transforms into the point of infinity and the point w = 0 to the point z = ih. The function q (¥)
conformally maps the interior of the circle |§]| < 1 on the region D_ where the point ¥ = i transforms into
the point of infinity and the point ¥ = 0 onto the point z = —ih. We introduce the function q; (w), which is
analytic inside the circle |w| < 1, such that

(D=1, =1, A(D=alq:(t), []=1.
We consider the functions
G (w)=ur(fw))f (w); G_(w)=u_(glg))f' w). - (4)
In accordance with the singularities of the functions ﬁ+(z), ﬁ_(z), and f(w) the function G,(w) must have a
pole of first order at the point w = 0 and a pole of second order at the point:w = i, and the function G_(w)

must be analytic everywhere within the circle |w] < 1 and have a pole of second order at the point w = i.
The condition (1) for these functions will be

Re[G(0)- 11=0, |¢|=1. _ (5)

Taking the singularities of the functions G (w) and G_(w) into account together with the conditions (3)
and (5), we write them in the following way:

) = 2 — o G- = (6)

w (w—1)??

where @y and @, are arbitrary real numbers. The pressure continuity condition (2) makes it possible to ob-
tain an equation for determining the mapping function:

(Im ()= ) IF1F = — T G+ e (6 — (G491 M
Thus the original problem is reduced to a search for a solution to Eq. (7) for the function f(w) and to

a determination of the constants @, and a,.

We shall look for a function f(w) in the form

Fw) =3 fu(w)e®. (8)
k=0

Then, equating coefficients of like powers of €, we obtain the following recursion relations for the determi-
nation of the functions fk wy=(k=0,1,...):

(Tm (1) = )Vl = — T 16 9)

ol T (£,) + g, T () = — E- (162 — 164 ); (10)

|fol® Im (f) = — ﬁ GlIm(fryp), k=2,3,...,
p=1
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4 where

e go= SfFo p=01,....
7 ~ s=0
J 0>a>-05 Without discussing in detail the question of the convergence of the
oy * series (8), we point out that the parameter € is very small (€ ~ 1073 for
\/— such media as air—water. We therefore confine ourselves to the first
two terms, f and fy, in the expansion (8) assuming that the modulus of
Yy x, a<-05 the functions f i does not increase rapidly as k increases.

Using condition (3) and the fact that the point w = { transforms into

!
I the point at infinity and the point w = 0 into the point z = ih, we obtain a
V solution of Egs. (9) and (10) in the form
! v
w—1i

i f(w) = cL—-in+2iv(—%a+1)—v(a+1)w—iv—2—w2, (1)
Fig, 2
where
J v=eFra,/h; a=afh; c=—2h+2 (—2—0,—{—1). (12)
1
u>u
— ! Knowing the mapping function f(w), we find the velocity of the fluid
¢ <0 * in the region D, from Eqs. (4) and (6),
Fig. 3 h(_g.a2+3a+2)
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The first three terms determine the fluid velocity for motion of a vortex of intensity I' = 27 a; in the neigh-

borhood of a screen, and the remaining terms take into account the change in the shape of the boundary.

Using similar arguments, we show that the function q (¥) has the form

Q(ﬂ’):—‘—P—d_—l +ih+2iv(-—2—a—|—-l)—-v(q_l__i).‘p_,,‘_,lpz (13)
where
d:2h+2v(%a+1),

and the velocity of the fluid in the region D_ is

- L T@4+a)h ik 7
u_(z)=1-+wv [(2_ i e ih)3}"

Using Eq. (11) or (13), the equation for the boundary between the fluids can be written in the form

. 2vh? h
y= z:_hz (1+ zsa_l_hz)
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where a and v are given by Eqs. (12), where a; = T/2r,

The variation in the shape of the line L as a function of the parameter a, which characterizes the in-
tensity of the vortex and its closeness to the boundary, is shown in Fig. 2. When a > 0, the vortex increases
the velocity of the upper fluid in the neighborhood of the boundary, leading to a decrease in the pressure on
the lower fluid and a rise of that fluid. When —0.5 < a < 0, the vortex decelerates the motion of the upper
fluid near the boundary with a consequent depression of the fluid immediately beneath the vortex, The
marked change in the shape of the line L. when a< —0.5, namely, the appearance of two minima xy 3 =
+hv=2a—T at which the value of the function is unchanged as the parameter adecreases [y (x ;) =~ Fr"
£/21, is caused by the creation of two critical points on the boundary between the fluids:

. a,\ , a . as
Cm:%”ﬁﬂiy/ﬁ@“ﬂ)

Now let the vortex be in the denser fluid (at the point z = —ih). Then the functions G,(w) and G_(w)
change places,

. ag idy
(w—i)? w

Gr(w)= ﬁ; G (w)

Y

however, Eq. (9) will not have so simple a solution as in the previous case. If one represents the mapping
function in the form of a series in powers of a(|e] « 1)

f@)= 3 fu(w)a®
k=0

we obtain equations for the determination of the functions f;(w) and f; (w) similar to Eqs. (9) and (10),
which when solved yield

f(w)=—‘;u—c:;'+ih+iu——g~w.

Here

n=2Fr(1--e)a,/h, c=2k+p.
In this case, the fluid velocity in the region D_ has the form

u_(z) =1+

a e pla+h 4 2pihay
TG R k) Gtk T i)

the mapping function q (¥) and the fluid velocity in the region D, are, respectively,

2h—p . o
q(§) = p—g — th+ip— 5P
- 3
ug(z)=1— (—;,'——_;—p—lh,)_z
The line of density discontinuity of the fluids has the shape of a single wave, the curvature of which depends
on the sign of the circulation (Fig. 3)
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